REVERSAL OF CHIRALITY INDUCED BY ORTHO-METHOXYL SUBSTITUTION OF ARYLPHOSPHINE LIGABDS IN RHODIW-CATALYSED ASYMMETRIC HYDROGENATION

John M. Brown* and Barry A. Hurrer

Dyson Perrins Laboratory. South Parks Road, Oxford OX1 3QY

Abstract: o-Methoxyl substitution in DIOPC2) causes a reversal of configuration in asymmetric homogeneous hydrogenation of enamides.

Many diverse types of optically active biphosphine have been applied to asymmetric hydrogenation. The most common structure has a chiral chain of two or four atoms linking tuo diphenylphosphine groups. so that the active rhodium catalyst contains a 5- or 7-membered chelate ring. There is one example' of a chelating biphosphine (I) which is asymmetric at phosphorus, and this is highly effective in the reduction of <u>Z</u>-dehydroamino **acids. giving optical yields in excess of 90%. The o_methoxyl group in (I) is essential for high stereoselectivity and in related monophosphines other ortho-substituents are much Less effective.¹ In the present work we describe the consequences of o-methoxyl substitution in DIOP' (2) the most widely used asymmetric biphosphine.**

The reaction of ditosylate (3)³ with potassium di-o-anisylphosphide in dioxan (20 $^{\circ}$ C, 10 min; anion formed by cleavage of tri-o-anisylphosphine in situ) gave, after recrystallisation from methanol analytically pure <u>R</u>-PAMPOP (4) (31<mark>%, m.</mark>p. 148-9⁰, $\text{I}\alpha\text{I}_{20}^{\text{D}}$ =-27.16 (0.6, CHCl₃)). This was converted into the rhodium norbornadiene complex (5) by conventional methods. The proton n.m.r. spectrum of (5) in CD₂Cl₂ showed two separate pairs of diastereotopic 0-methyl groups, δ 3.64, 3.97 p.p.m., indicating a fixed **conformation in which one pair is weakly co-ordinated to rhodium. as in the analogous cyclooctadiene complex of Cl) .4 One pair of ortho-protons is at unusually Lou field and the other at rather high field. 6 6.56, 9.15 p.p.m. with broadening at ambient temperature.**

Complex (5) catalyses the hydrogenation of severe1 unsaturated acids and esters and

results are recorded in the TABLE, along with comparable data obtained using (2). The former reacts more slowlyr and reduction was normally carried out by stirring a solution of catalyst and substrate overnight under hydrogen. Complete hydrogenation was obtained in all cases save that of atropic acid, which was recovered unchanged, although a bright red colour indicated complexation of the substrate.

a Conditions for (4): catalyst: substrate 1:100, MeOH, 20⁰, pH₂ = 1 atm, conditions for (2) as described in the original papers standardised to the R-configuration of phosphine. **b** S-N-behenylvaline tert-butylamide 4% on Chromosorb G AW-DCMS. ^C Perkin-Elmer 241 dilute solution in MeOH or CHCl₃. ^d Eu(hfc)₃, 1.5 equiv. in CCl₄.

 $6,7.9.10;$ a) $R = H$, b) $R = Me$

Thus PAMPOP reduces *z* dehydroamino acids in the opposite stereochemical sense to DIOP. **its ring-alkylated derivatives and a range of its carbocyclic analogues. 5.6 It gives higher optical yields uith esters than with acids, at variance with the normal trend, ' and thereby ruling out the possibility of intracomplex hydrogen-bonding between corboxylic acid** and methoxyl-group. Dimethyl itaconate (11) is normally a poor substrate in asymmetric **hydrogenation7and this is the best optical yield yet reported.**

Phosphorus-31 NMR studies give some insight into the reaction mechanism. Complex (5) (6 11.8 p.p.m J_{Rh} = 157 Hz) reacts slowly with hydrogen in MeOH (1 ml, 0.03M, 120 mins) to give a yellow solvent adduct (6 43.4, J_{RhD} = 203 Hz). This reacts at low temperatures with (6a) to give a single species (12a) (6, 40.9, 6₂ 3.9 p.p.m.; j_{RhP₁ = 152, j_{RhP2} = 134.} **I JPP = 56 Hz). On warming to 250K this isomerises to a second species 13a) which is** the major component (60%) at equilibrium (δ, 30.3, δ₂ -2.6 p.p.m.; J_{RhP1} = 147, J_{RhP2} = 125. J_{n.e.} = 32 Hz). Under hydrogen (c. 500 **mm,** 250K) both species disappear simultaneous P1P2
suggesting that the equilibration rate exceeds the rate of hydrogenation. A closely relate **pair of complexes is formed from (6b). With Cfa) or its carbon-13 Labelled analogues, 8** the major species at equilibrium is (12b) (65%) together with (13b)(15%) and a new species **(14) (20%). I3 C chemical shifts and 31p _ 13 C coupling constants 8 establish that (12b) and (14) are conventional enamide complexes uith bound olefin and amide, and free carboxyl** groups. In (13b), however, the amide is free and the carboxyl group bound to rhodium. In addition, there is a coupling constant of 42 Hz between C_4 and P_2 , which is uniquely **consistent with a a-benryl complex. 9 Rhodium alkyls are normally unstable and the ready accessibility of (13) under catalytic conditions presents intriguing possibilities for further study.**

We thank S.R.C. for a studentship (to B.A.H.) and Dr. P.A. Chaloner for Acknowledgment 13_{C-labelled compounds.}

REFERENCES

I) B.D. Vineyard, U.S. KnonLesr M.J. Sabacky, G.L. Bachnan and D.J. Ueinkauff, J. Amer. Chem. Soc., 1977, <u>99</u>, 5946; W.S. Knowles, M.J. Sabacky and B.D. Vineyard, Adv. Chew Ser. 1974. 132, 274. -

2) T.P. Dang and H.B. Kagan, J. Amer. Chem. Soc. 1972, 94, 6429.

3) B.A. Murrer. J.M. Brown, P.A. Chaloner, P.N. Nicholson and D. Parker, Synthesis, 1979, 349.

4) Ref 1; and private colnunication from U.S. Knowles.

5) T.P. Dang and H.B. Kagan, Chem. Commun. 1971, 481; T.P. Dang, J.C. Poulin and H.B. Kagan, J. Organometal Chem. 1975, 91, 105; G. Gelbard, H.B. Kagan and R. Stern, **Tetrahedron. 1976 32. 233; D. Sinou and H.B. Kagan. J. Organometal. Chem. 1976, 114, 325. -**

61 R. Glaser, M. Twaik. S. Geresh and J. Blumenfeld. Tetrahedron Lett. 1977, 4635 idem, ibid, 4639; P. Avion-Violet. Y. Colleville and J. Varagnat, J. Mol. Cat. 1979. z, 41.

7)'O K. Achiwa. Tetrahedron Lett. 1977, 3735.

8) **J.M. Brown and P.A. Chaloner.** Chem. Commun. 1979, 613.

9) c.f. M.H. Chisholm, H.C. Clark, L.E. Manzer, J.B. Stothers and J.E.H. Ward, **J. Amer. Chem. SOC.. 1973, 95, 8574. -**

10) But see the very recent work which shows that DIPAHP is an efficient catalyst for asymmetric hydrogenation of (ll)and **a range of related itaconic acid derivatives;** W.C. Christopfel and B.D. Vineyard, J. Amer. Chem. Soc., 1979, 101, 4406.

(Received in UK 14 September 1979)